17 research outputs found

    Robot Games for Elderly:A Case-Based Approach

    Get PDF

    Public Relation Robots - An Overview

    Get PDF

    An Adaptive Game Algorithm for an Autonomous, Mobile Robot:A Real World Study with Elderly Users

    Get PDF

    An Adaptive Robot Game

    Get PDF

    Practical evaluation of robots for elderly in Denmark — an overview

    Get PDF

    Adaptive Human aware Navigation based on Motion Pattern Analysis

    Get PDF
    Abstract—Respecting people’s social spaces is an important prerequisite for acceptable and natural robot navigation in human environments. In this paper, we describe an adaptive system for mobile robot navigation based on estimates of whether a person seeks to interact with the robot or not. The estimates are based on run-time motion pattern analysis compared to stored experience in a database. Using a potential field centered around the person, the robot positions itself at the most appropriate place relative to the person and the interaction status. The system is validated through qualitative tests in a real world setting. The results demonstrate that the system is able to learn to navigate based on past interaction experiences, and to adapt to different behaviors over time. I

    Adaptive Human-Aware Robot Navigation in Close Proximity to Humans

    Get PDF
    For robots to be able coexist with people in future everyday human environments, they must be able to act in a safe, natural and comfortable way. This work addresses the motion of a mobile robot in an environment, where humans potentially want to interact with it. The designed system consists of three main components: a Kalman filter-based algorithm that derives a person's state information (position, velocity and orientation) relative to the robot; another algorithm that uses a Case-Based Reasoning approach to estimate if a person wants to interact with the robot; and, finally, a navigation system that uses a potential field to derive motion that respects the person's social zones and perceived interest in interaction. The operation of the system is evaluated in a controlled scenario in an open hall environment. It is demonstrated that the robot is able to learn to estimate if a person wishes to interact, and that the system is capable of adapting to changing behaviours of the humans in the environment

    What's a robot doing in the Citizen Service Centre?

    No full text
    corecore